

Figure 1. Example of cards in the game of Set

Real-Time Detection and Recognition
 of Cards in the Game of Set

Hrvoje Ditrih1, Sonja Grgić1, Leona Turković2
1 University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb, Croatia

2 University of Zagreb, Faculty of Croatian Studies, Borongajska cesta 83d, 10000 Zagreb, Croatia

hrvoje.ditrih@gmail.com

Abstract— This paper aims to present a procedure for real-time

detection and recognition of the cards from the card game Set

using computer vision techniques. Our approach to recognizing

cards in images is done in three steps: segmenting cards from the

image, extracting features from card images with horizontal and

vertical lines, and card feature classification with support vector

machine (SVM). Small number of features are extracted from

relatively small subset of pixels to achieve real-time processing.

Keywords—Computer Vision; Object Detection, Card Game

Set; Card Segmenatation; Card Detection; Card Recognition;

Neural Network; Card Classification

I. INTRODUCTION

Computer vision is a research field that aims to develop
techniques that enable computers to see and understand the
content of digital images in a similar way as people do [1]. The
areas closely associated with computer vision are image
analysis, image understanding, and image classification. At the
current time, computer vision techniques are successfully
applied in solving many problems in various areas such as
medical imaging, optical character recognition, face
recognition and biometrics, self-driving car, motion tracking
and capture, etc. Object detection and recognition is a central
technology in computer vision that deals with finding and
identifying objects in digital images [2]. Object detection is a
starting point for solving other complex problems in computer
vision.

In this paper object detection methods will be used to detect
playing cards in a video sequence and to recognize Set card
features. The method presented in [3] uses OpenCV [4] for
image upload, card identification, image segmentation, color
recognition, and Keras [5] model to predict the class of the
card. The model has 92% accuracy for categorical
classification. The method presented in [6] used the following
steps: extract individual cards from an image, classify each
separate image using a deep convolutional network, and find
valid set combinations. The results are very promising and for
some parameter combinations the set will be found in each
image where it exists.

In our approach detection and recognition of the cards is
done in three stages on a live video feed using multiple
machine learning classifiers. Features are extracted from a very
limited number of pixels in the image to save processing time
but still, classifiers have high accuracy on the test dataset: 97%
– 100%.

II. THE GAME OF SET

A. Cards of the Game

Set is a real-time card game whose deck consists of 81
unique cards that vary in four features. Each feature can vary
across three possibilities as follows: color (red, purple, or
green), shape (oval, squiggle, or diamond), number of shapes
(one, two, or three), and shading (solid, striped, or outline).
Each possible feature combination occurs just once in the deck.
An example of cards from the deck can be seen in Fig. 1.

B. Rules of the Game

The object of the game is to find a set among cards that
have been placed face-up on the table and arranged in a grid. A
set consists of three cards in which each of the cards’ features
are all the same or are all different on each card. E.g., the
number of shapes must be either same on all three cards or
different on each of the three cards, and so on for other card
features. Fig. 1 shows a combination of cards that form a set
where all card features are different.

The game can be played by two or more players who are all
trying to identify sets. The game starts with 12 cards dealt from
the deck. When a player finds a combination of cards that
forms a set, he must call it before collecting the cards from the
table. Then, three new cards from the deck are dealt onto the
table. Each time player calls an incorrect set, he must return
three cards to the deck if he has any. If none of the players can
find a set among dealt cards, three more cards are added to the
table, and so on. The game ends when the deck is depleted, and
players cannot find a set in the remaining cards. The player
with the most cards collected is the winner [7].

C. The problem of Real-Time Detection and Recognition

Card detection and recognition is done on the live video
feed from the camera. The developed procedure can detect and
recognize an unlimited number of cards in the video frame.
Since the aim is to produce real-time recognition, then card

978-1-6654-4437-8/21/$31.00 ©2021 IEEE

detection, feature extraction, and classification must be
sufficiently fast.

For the most part of the game of Set, there would be 12 or
more cards dealt. For this reason, feature extraction is done on
a relatively limited number of pixels in the image which can
reduce inference accuracy and robustness but it will boost the
performance which is crucial for the real-time system.

III. CARD DETECTION AND RECOGNITION

Detection and recognition of the cards is done in three
stages: segmenting the cards from the image, feature extraction
from segmented parts, and card feature inference. For every of
four card features, one classifier is trained. Also, one additional
classifier is trained to determine if segmented part of the image
represents a card from the game of Set.

A. Card Segmentation

The central technique used in card segmentation is finding
contours with the OpenCV framework. Contours represent a
curve joining all the continuous points along the boundary,
having the same color or intensity. OpenCV contour finding
works on grayscale images where objects that should be
detected are white and the background is black [8]. Therefore,
to detect objects in an image, a thresholding or edge detection
operation like Canny is needed to get grayscale image.

Card segmentation is done in four stages: edge detection,
finding contours, approximating contours with quadrangles,
and perspective transformation. For edge detection (Fig. 2b),
Canny method is used with hysteresis thresholding parameters
30 and 150. Contour finding (Fig. 2c) uses parameters
RETR_EXTERNAL and CHAIN_APPROX_SIMPLE. The first
parameter indicates that only external contours of objects are
retrieved. This speeds up the process of finding contours since
only the outer contours of the cards are needed. The second
parameter is explained in [8] and simplifies contour analysis.
To filter contours that do not represent cards, two heuristics are

used: contour surface must be above 5000 px2 to filter out very
small objects or noise, and contour curve must approximately
look like a quadrangle. Contours are approximated with closed
polygons using OpenCV function approxPolyDP [9].
Accuracy is set to 0.07·arLen, where arLen represents contour
perimeter length. Then, all contours that do not approximate
quadrangles are filtered out. The result of heuristic filtering can
be seen in Fig. 2d. The final step in card segmentation is
perspective transform. Each quadrangle is transformed to an
image of dimensions 450x300 px using OpenCV function
warpPerspective.

B. Cards Dataset

To train classifiers, a representative dataset is needed.
Using the card segmentation procedure described in section A,
a dataset consisting of cards from the game of Set was created.
The dataset contains 935 images. Each card from the deck
appears at least 10 times in the dataset. Images were captured
in various lighting conditions, from different angles, and at
different camera distances. Fig. 3 shows 30 randomly selected
images from the dataset.

C. Scanlines

For each classifier, a uniform way of extracting features is
used. Lines of pixels, called scanlines, are extracted from the
segmented image. There are horizontal and vertical scanlines.
Horizontal lines are placed on values 126, 150, and 174 of the
y-axis. Vertical scanlines are placed on 157 and 255 values of
the x-axis. All features are extracted from scanline pixels. Fig.
4 shows both vertical and horizontal scanlines and their order.

D. Segmented Image Classification

Card segmentation procedure and its filtering heuristic
passes through all objects in the shape of quadrangles and
cannot alone filter out objects that are not cards from the game
of Set. For this reason, a two-layered fully connected neural
network (FCNN) is used as the classifier. Input into FCNN are
pixels from second horizontal scanline in HSV color space.

a) Input image

b) Canny edge detection

c) Contours

d) Approximated quadrangles

e) Perspective transform

Figure 2. Card segmentation example

Figure 3. Cards dataset

Figure 4. Horizontal and vertical scanlines

Figure 8. Shape classifier

Figure 9. Most representative color of the second horizontal scanline

Figure 10. Most representative color
plot on the dataset

Figure 11. Color classifier

The reasoning for using HSV instead of RGB is that FCNN can
directly, rather than implicitly, use H and V channels which
determine pixels' hue and brightness. The training dataset
consists of:

1. Images from the dataset described in section B
annotated as true (935 images).

2. Again, images from the dataset described in
section B, but rotated 90° and rescaled to
dimensions 450x300 (935 images). The reason is
to have images that look similar to cards but are
annotated false.

3. 68 images that are not cards of the game of Set.
4. 100 generated images of uniform noise.
5. 100 generated images of uniform color.

There is also a test dataset consisting of images of cards from
the game of Set downloaded from the open-source project1 (81
images) and generated images of uniform noise and uniform
color (100 + 100 images).

FCNN was trained with Adam [10]. The input layer
consists of 3·450=1350 neurons. The first layer has 500, and
the second 200 neurons. ReLu activation function was used.
Output is one neuron with the sigmoid function representing
the probability of the input image being a card of the game of
Set. Mini-batch of size 20 was used with dataset shuffling at
every epochs’ end. Cross-entropy was used as a loss function.

E. Number of Shapes Classifier

Feature called hit position is used for the number of shapes
classifier. Hit position is the normalized position of first non-
white pixel on second horizontal scanline (Fig. 5). Hit position
plot on the dataset can be seen in Fig. 6 alongside the result of
training SVM classifier with linear kernel. To determine hit

1
 https://github.com/nicolashahn/set-solver/tree/master/image-

data/all-cards/labeled

position, Gaussian adaptive thresholding was used with width 5
and threshold parameter 2. Adaptive thresholding was used
rather than fixed because of non-uniform lighting conditions
that can occur in the scene.

F. Shape Classifier

For shape classification, distances between hit positions of
different scanlines are used. Let hit positions of horizontal
scanlines be a, b, and c (Fig. 7). Let l1=a-b and l2=c-b. Pair
(l1,l2) is the feature used for shape classification. Fig. 8 shows
(l1,l2) plot on the dataset alongside decision boundary for the
SVM classifier with the polynomial kernel of degree 3.

G. Color Classifier

RGB pixel chosen with heuristic from the second horizontal
scanline is used as a feature for the color classifier. The
heuristic is choosing a pixel with the most representative color
(Fig. 9). Firstly, pixels that are considered are the ones that
pass adaptive threshold explained in section E. Then, pixel
with the highest saturation is chosen based on HSV values.
Often, dark pixels can have high saturation, and determining
hue from dark pixels is more difficult than from bright ones.
Therefore, only pixels that have the value of channel V higher
than 29 are considered, except in cases where none of the
pixels values are higher than 29. Fig. 10 shows the plot of the

Figure 5. Hit position

Figure 6. Number of shapes classfier

Figure 7. Hit positions for different shapes

Figure 12. Fill classifier

RGB values of the most representative colors of cards in the
dataset. SVM with the polynomial kernel of degree 5 was used
as the classifier. The decision boundary for the fixed value
B=127 can be seen in Fig. 11.

H. Fill Classifier

Only the fill classifier uses vertical scanlines for feature
extraction. Cards with two shapes use first vertical scanline,
and cards with one or three shapes use second vertical scanline.
Because of this, the number of shapes must be inferenced
before continuing to fill classification.

First, scanline pixels are color corrected by transforming

every pixel with a diagonal matrix whose values are
���

��
,

���

��
,

���

��
, where ��,
�, and �� are RGB values of the brightest pixel

in the scanline. Then, features are extracted from the 30 pixels
around the center of the vertical scanlines. Considering pixels
are in HSV color space, let �̅ be the mean value of pixels’ S
channel, and let �̅ be the mean value of the V channel. The pair
��̅, �̅� is the feature used for the fill classifier. Fig. 12 shows the
plot of the feature on the dataset alongside the decision
boundary of the SVM classifier with the RBF kernel.

IV. RESULTS

The accuracy of the classifier that determines if segmented
part is the card from the game of Set is 99.67% on the training
dataset and 100% on the test dataset. Even though the accuracy
score is high on the train and test datasets for this classifier, its
accuracy in the real world was not as high. The classifier has a
bias towards classifying objects as non-cards, but it works well
when cards are close enough to the camera and when the cards
are positioned horizontally.

The performance of the card feature classifiers is dependent
on the underlying algorithms of image processing and feature
extraction. That is why the test dataset wasn’t created to fine-
tune the parameters of the machine learning classifiers. The
accuracy scores of the classifiers are given in table 1.

All the card feature classifiers give high accuracy in a real-
world application. The number of shapes classifier gives the
best performance of all classifiers. The shape classifier is very
susceptible to noise and slight errors during card segmentation.
Color classifier best performs under good lighting conditions.
In dark scenes, it has a bias towards classifying cards as purple
because that is the darkest color out of the three. Fill classifier
has problems distinguishing outline and stripes fill when cards
are far away from the camera. The reason is low resolution of
the segmented image making the striped fill look like outline
fill. This can also be seen in Fig. 12 where outline and stripes
fill form one cluster. All classifiers and feature extraction
techniques are simple and fast enough for real-time usage.

TABLE I. CLASSIFIER ACCURACY ON THE DATASET

Classifier Accuracy

Number of shapes 100%

Shape 97%

Color 99.79%

Fill 99.36%

V. CONCLUSION

This paper presents a procedure for detecting and
recognizing the cards from the game of Set in real-time video
feed using classic computer vision techniques – namely, image
processing. Five classifiers are presented. Four for each of the
cards’ features and one for classifying segmented parts of the
image. It was showed how using a very limited number of
pixels from the image classifiers can produce impressive
accuracy and speed.

Classic computer vision techniques for object detection and
recognition lack in robustness compared to their deep learning
counterparts. Therefore, it would be interesting to explore deep
learning solutions for real-time card recognition. That said,
classifiers presented in this paper can increase their robustness
by extending the dataset and exploring more interesting image
processing techniques. Namely, the neural network presented
in this paper would greatly benefit from a larger and more
varied dataset of Set cards and non-set cards.

REFERENCES

[1] V. Wiley and T. Lucas, "Computer Vision and Image Processing: A
Paper Review", International Journal of Artificial Intelligence Research,
vol. 2, no. 1, pp. 28-36, June 2018.

[2] K. Sharma and N. V. Thakur, "A review and an approach for object
detection in images", International Journal of Computational Vision and
Robotics, vol. 7, pp. 196–237, January 2017.

[3] A. Dotis, “Ready, SET, Image Recognition,” Medium, Jun. 05, 2018.
https://dganais.medium.com/ready-set-image-recognition-720be22d7051
(accessed June 3, 2021).

[4] J. Howse and J. Minichino, Learning OpenCV 4 Computer Vision with
Python 3, Packt Publishing, 2020.

[5] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent
Systems, O'Reilly Media, 2019.

[6] S. Tetelepta, Detecting SET cards using transfer learning,
https://towardsdatascience.com/detecting-set-cards-using-transfer-
learning-b297dcf3a564 (accessed June 3, 2021)

[7] https://www.setgame.com/sites/default/files/instructions/SET%20INST
RUCTIONS%20-%20ENGLISH.pdf (accessed June 10, 2021)

[8] OpenCV: Contours : Getting Started’.
https://docs.opencv.org/4.5.2/d4/d73/tutorial_py_contours_begin.html
(accessed June 3, 2021)

[9] OpenCV: Contour Features,
https://docs.opencv.org/4.5.2/dd/d49/tutorial_py_contour_features.html
(accessed June 3, 2021)

[10] D. P. Kingma and J. Ba, "Adam: A Method for Stochastic
Optimization", arXiv:1412.6980 [cs], January 2017,
http://arxiv.org/abs/1412.6980 (accessed June 3, 2021)

